Rich's Mandelbrot Gallery

The Mandelbrot Set is a set named after Benoit Mandelbrot who first obtained high-quality visualizations of the set in 1980. While not technically a fractal, it contains within itself many similar copies of the entire set. Zooming in at the boundary of the set (in black) reveals hidden treasures.

See Mandelbrot Set for more information.

See What's so special about the Mandelbrot Set? for a good video describing the math behind the Mandelbrot Set and its related Julia Sets.

Click an image below to enlarge.

Bird of Paradise
x=0.3750001200618655
y=-0.2166393884377127
radius=2e-12
Black and White
x=0.255086900908376
y=-0.4949785322438217
radius=1e-5
Blind Spot
x=.250414246919196
y=0.0000134864436812731
radius=6e-7
Brots in a Web
x=-1.9408510363187962822
y=-0.00067213130677203846807
radius=1e-6
Cell
x=-0.843233764530751513324611729773572725750160827
y=0.22381804155806995913989829482160200044199335
radius=1e-25
Cellular Mitosis
x=-0.743643927058028316631291361415826008739702757197807860510631347994998874371449081
y=0.131825980877906947146424011940025164151924022214318464431311547636916892789256531
radius=3e-52
Chain of Minibrots
x=0.25061
y=0.000025
radius=1e-6
Clover
x=-0.0452407411
y=0.9868162204352258
radius=5e-9
Cream Horn
x=-1.25066
y=0.02012
radius=2e-4
Crossroads
x=0.36636298342276434
y=0.591533773261445227
radius=1e-14
Deep Dive
x=-0.13856524454488
y=-0.64935990748190
radius=3e-10
Diamond
x=-0.74454004889782870875
y=-0.1217241897712401158
radius=1e-12
Double Spiral
x=-0.767757799563
y=0.107827832961
radius=2.5e-3
End of the Road
x=-1.9999999999995
y=0.
radius=1e-12
Ferns
x=-0.5963575495815011
y=0.662749255458733
radius=1e-8
Fidget Spinner
x=-0.12702288604303376058504939571344674642157173
y=-0.98728474138900681012772183234313984426625069
radius=1e-24
Flashy Minibrot
x=-0.04284680942516681
y=0.9897501944756448
radius=1e-4
Fuzzy Minibrot
x=-0.8652600711754
y=0.2428386451466
radius=1.1e-3
Infinite Seahorses
x=-0.7436439270579583
y=0.1318259808756381
radius=1e-14
Islands
x=-0.743643927057876963
y=0.13182598087768664078
radius=1e-10
Julia
x=-0.74454004889782870875
y=-0.1217241897712401158
radius=1e-10
Julias Spiral
x=-0.74454004889773870875
y=-0.1217241897713101158
radius=1e-18
Lattice
x=0.2507463626604597
y=-0.000029943045527979923
radius=2.5e-8
Lightning Bolts
x=-1.15412664822215
y=0.30877492767139
radius=4e-9
Lightning Cross
x=-1.315180982097868
y=0.073481649996795
radius=2e-13
Lightning Tip
x=-1.296355138173038
y=0.4418516057351967
radius=1e-13
Mandelbrot
x=-0.75
y=0.0
radius=1.5
Mandelbulb with Lightning
x=-0.925
y=0.266
radius=0.05
Mandelbulb with Seahorses
x=-0.7463
y=0.1102
radius=0.005
Mandelbulb with Triple Spiral
x=-1.940849284635874
y=-0.0006723298955230554
radius=1.5e-5
Merging Pinwheels
x=-0.7336438924199521
y=0.2455211406714035
radius=4.5e-10
Minbrot Sun Disk
x=-1.99999911758738
y=0.0
radius=2e-12
Minibrot Antennae
x=-1.787770124208885
y=0.0
radius=1e-10
Minibrot on a Cross
x=0.2542099079452338
y=-0.0004374588482306643
radius=7e-9
Minibrot Where Tails Meet
x=-0.745428
y=0.113009
radius=4e-5
Minibrot with Circle
x=-1.1533577030005
y=0.307486987838885
radius=1e-13
Minibrot with Circle Dust
x=0.45272105023
y=0.396494224267
radius=1.4e-10
Minibrot with Double Spirals
x=-0.766777799563
y=0.108252832961
radius=1e-4
Minibrot with Dust and Lightning
x=0.45272105023
y=0.396494224267
radius=3e-9
Minibrot with Eight Lightning Bolts
x=-1.15412664822215
y=0.30877492767139
radius=1e-11
Minibrot with Four Lightning Bolts
x=-1.15412664822215
y=0.30877492767139
radius=7e-11
Minibrot with Lace
x=-0.748127681290498
y=0.09408613781852182
radius=1e-6
Minibrot with Octagon Dust
x=0.45272105023
y=0.396494224267
radius=4e-10
Minibrot with Rays
x=-1.786440255570314
y=0.
radius=1e-10
Minibrot with Seafoam
x=-0.7454284192261258
y=0.1130090176951289
radius=2e-6
Minibrot with Seahorses
x=-0.74454004889782870875
y=-0.1217241897712401158
radius=1e-5
Minibrot with Spirals
x=-1.9408484059504718
y=-0.0006733881870097287
radius=5e-10
Minibrot with Thorns
x=-1.73199906
y=0.000568325529
radius=1.5e-5
Minora
x=0.3369844464873
y=0.0487782196791
radius=4.5e-12
Nested Circles
x=0.2507465037225357
y=-0.000029937331112847903
radius=2e-7
Octopus
x=-0.16070134
y=1.03756649
radius=1e-7
Parade of Elephants
x=0.250746364315271
y=-0.00002994601778322861
radius=5e-11
Pinwheel
x=-0.92479894596021764
y=0.2659699255109853
radius=1e-14
Seahorse
x=-1.1876386541721002
y=0.30330356693973076
radius=1e-5
Seahorse Coast
x=-0.7436439270580283
y=0.1318259808779069
radius=1e-2
Seahorse Parade
x=-0.74529
y=0.113075
radius=3e-4
Seahorse Tail
x=-0.7453
y=0.1127
radius=8e-4
Shades of Gray
x=-0.7501112710122269
y=-0.009161334147374207
radius=5e-11
Spiral and Blackhole
x=0.25603102316772636
y=-0.0007546292037262689
radius=5e-5
Spiral Galaxies
x=-1.1533577030005
y=0.307486987838885
radius=5.5e-10
Starburst
x=-0.689727050963
y=-0.3067409501332
radius=1e-7
Stars and Brots
x=0.453356524534
y=0.348110803291
radius=1e-2
Surfs Up
x=-0.7436439270580089002
y=0.1318259808778972
radius=1e-18
Swirl
x=0.0005697777730442394
y=0.7514647407619401945
radius=1e-14
Toadstools
x=-0.1542247792969633
y=1.0370266014325815
radius=2e-6
Valley of Elephants
x=-1.74999999999
y=0
radius=5e-16
Wormhole
x=-0.6191863031053233
y=0.4047769776925564
radius=1e-6

Click an image below to view video.

Crossroads
End of the Road
Ferns
Julia
Lightning Tip
Minibrot in Double Seahorse Tail
Minibrot on a Cross
Minibrot with Lace
Minibrot with Rays
Minora
Pinwheel
Spiral and Blackhole
Swirl

See Computing the Mandelbrot Set for information about the C++ programs used to create these images.

Computed with a Raspberry Pi 5 Cluster

©2025 Richard Lesh. All rights reserved.
Rich's Mandelbrot Gallery

Rich's Mandelbrot Gallery

The Mandelbrot Set is a set named after Benoit Mandelbrot who first obtained high-quality visualizations of the set in 1980. While not technically a fractal, it contains within itself many similar copies of the entire set. Zooming in at the boundary of the set (in black) reveals hidden treasures.

See Mandelbrot Set for more information.

See What's so special about the Mandelbrot Set? for a good video describing the math behind the Mandelbrot Set and its related Julia Sets.

Click an image below to enlarge.

Bird of Paradise
x=0.3750001200618655
y=-0.2166393884377127
radius=2e-12
Black and White
x=0.255086900908376
y=-0.4949785322438217
radius=1e-5
Blind Spot
x=.250414246919196
y=0.0000134864436812731
radius=6e-7
Brots in a Web
x=-1.9408510363187962822
y=-0.00067213130677203846807
radius=1e-6
Cell
x=-0.843233764530751513324611729773572725750160827
y=0.22381804155806995913989829482160200044199335
radius=1e-25
Cellular Mitosis
x=-0.743643927058028316631291361415826008739702757197807860510631347994998874371449081
y=0.131825980877906947146424011940025164151924022214318464431311547636916892789256531
radius=3e-52
Chain of Minibrots
x=0.25061
y=0.000025
radius=1e-6
Clover
x=-0.0452407411
y=0.9868162204352258
radius=5e-9
Cream Horn
x=-1.25066
y=0.02012
radius=2e-4
Crossroads
x=0.36636298342276434
y=0.591533773261445227
radius=1e-14
Deep Dive
x=-0.13856524454488
y=-0.64935990748190
radius=3e-10
Diamond
x=-0.74454004889782870875
y=-0.1217241897712401158
radius=1e-12
Double Spiral
x=-0.767757799563
y=0.107827832961
radius=2.5e-3
End of the Road
x=-1.9999999999995
y=0.
radius=1e-12
Ferns
x=-0.5963575495815011
y=0.662749255458733
radius=1e-8
Fidget Spinner
x=-0.12702288604303376058504939571344674642157173
y=-0.98728474138900681012772183234313984426625069
radius=1e-24
Flashy Minibrot
x=-0.04284680942516681
y=0.9897501944756448
radius=1e-4
Fuzzy Minibrot
x=-0.8652600711754
y=0.2428386451466
radius=1.1e-3
Infinite Seahorses
x=-0.7436439270579583
y=0.1318259808756381
radius=1e-14
Islands
x=-0.743643927057876963
y=0.13182598087768664078
radius=1e-10
Julia
x=-0.74454004889782870875
y=-0.1217241897712401158
radius=1e-10
Julias Spiral
x=-0.74454004889773870875
y=-0.1217241897713101158
radius=1e-18
Lattice
x=0.2507463626604597
y=-0.000029943045527979923
radius=2.5e-8
Lightning Bolts
x=-1.15412664822215
y=0.30877492767139
radius=4e-9
Lightning Cross
x=-1.315180982097868
y=0.073481649996795
radius=2e-13
Lightning Tip
x=-1.296355138173038
y=0.4418516057351967
radius=1e-13
Mandelbrot
x=-0.75
y=0.0
radius=1.5
Mandelbulb with Lightning
x=-0.925
y=0.266
radius=0.05
Mandelbulb with Seahorses
x=-0.7463
y=0.1102
radius=0.005
Mandelbulb with Triple Spiral
x=-1.940849284635874
y=-0.0006723298955230554
radius=1.5e-5
Merging Pinwheels
x=-0.7336438924199521
y=0.2455211406714035
radius=4.5e-10
Minbrot Sun Disk
x=-1.99999911758738
y=0.0
radius=2e-12
Minibrot Antennae
x=-1.787770124208885
y=0.0
radius=1e-10
Minibrot on a Cross
x=0.2542099079452338
y=-0.0004374588482306643
radius=7e-9
Minibrot Where Tails Meet
x=-0.745428
y=0.113009
radius=4e-5
Minibrot with Circle
x=-1.1533577030005
y=0.307486987838885
radius=1e-13
Minibrot with Circle Dust
x=0.45272105023
y=0.396494224267
radius=1.4e-10
Minibrot with Double Spirals
x=-0.766777799563
y=0.108252832961
radius=1e-4
Minibrot with Dust and Lightning
x=0.45272105023
y=0.396494224267
radius=3e-9
Minibrot with Eight Lightning Bolts
x=-1.15412664822215
y=0.30877492767139
radius=1e-11
Minibrot with Four Lightning Bolts
x=-1.15412664822215
y=0.30877492767139
radius=7e-11
Minibrot with Lace
x=-0.748127681290498
y=0.09408613781852182
radius=1e-6
Minibrot with Octagon Dust
x=0.45272105023
y=0.396494224267
radius=4e-10
Minibrot with Rays
x=-1.786440255570314
y=0.
radius=1e-10
Minibrot with Seafoam
x=-0.7454284192261258
y=0.1130090176951289
radius=2e-6
Minibrot with Seahorses
x=-0.74454004889782870875
y=-0.1217241897712401158
radius=1e-5
Minibrot with Spirals
x=-1.9408484059504718
y=-0.0006733881870097287
radius=5e-10
Minibrot with Thorns
x=-1.73199906
y=0.000568325529
radius=1.5e-5
Minora
x=0.3369844464873
y=0.0487782196791
radius=4.5e-12
Nested Circles
x=0.2507465037225357
y=-0.000029937331112847903
radius=2e-7
Octopus
x=-0.16070134
y=1.03756649
radius=1e-7
Parade of Elephants
x=0.250746364315271
y=-0.00002994601778322861
radius=5e-11
Paradise Spiral
x=-0.74364392705800890090639032815
y=0.13182598087789720038514680484
radius=1e-19
Pinwheel
x=-0.92479894596021764
y=0.2659699255109853
radius=1e-14
Seahorse
x=-1.1876386541721002
y=0.30330356693973076
radius=1e-5
Seahorse Coast
x=-0.7436439270580283
y=0.1318259808779069
radius=1e-2
Seahorse Parade
x=-0.74529
y=0.113075
radius=3e-4
Seahorse Tail
x=-0.7453
y=0.1127
radius=8e-4
Shades of Gray
x=-0.7501112710122269
y=-0.009161334147374207
radius=5e-11
Spiral and Blackhole
x=0.25603102316772636
y=-0.0007546292037262689
radius=5e-5
Spiral Galaxies
x=-1.1533577030005
y=0.307486987838885
radius=5.5e-10
Starburst
x=-0.689727050963
y=-0.3067409501332
radius=1e-7
Stars and Brots
x=0.453356524534
y=0.348110803291
radius=1e-2
Surfs Up
x=-0.7436439270580089002
y=0.1318259808778972
radius=1e-18
Swirl
x=0.0005697777730442394
y=0.7514647407619401945
radius=1e-14
Toadstools
x=-0.1542247792969633
y=1.0370266014325815
radius=2e-6
Valley of Elephants
x=-1.74999999999
y=0
radius=5e-16
Wormhole
x=-0.6191863031053233
y=0.4047769776925564
radius=1e-6

Click an image below to view video.

Crossroads
End of the Road
Ferns
Julia
Lightning Tip
Minibrot in Double Seahorse Tail
Minibrot on a Cross
Minibrot with Lace
Minibrot with Rays
Minora
Pinwheel
Spiral and Blackhole
Swirl

See Computing the Mandelbrot Set for information about the C++ programs used to create these images.

Computed with a Raspberry Pi 5 Cluster

©2025 Richard Lesh. All rights reserved.